How to build a big star
The most massive stars in our galaxy weigh as much as 100 small stars like the Sun. How do such monsters form? Do they grow rapidly by swallowing smaller protostars within crowded star-forming regions? Some astronomers thought so, but a new discovery suggests instead that massive stars develop through the gravitational collapse of a dense core in an interstellar gas cloud via processes similar to the formation of low mass stars.
“In the past, theorists have had trouble modeling the formation of high-mass stars and there has been an ongoing debate between the merger versus the accretion scenarios.” said astronomer Nimesh Patel of the Harvard-Smithsonian Center for Astrophysics (CfA). “We’ve found a clear example of an accretion disk around a high-mass protostar, which supports the latter while providing important observational constraints to the theoretical models.”
Patel and his colleagues studied a young protostar 15 times more massive than the Sun, located more than 2,000 light-years away in the constellation Cepheus. They discovered a flattened disk of material orbiting the protostar. The disk contains 1 to 8 times as much gas as the Sun and extends outward for more than 30 billion miles – eight times farther than Pluto’s orbit.
The existence of this disk provides clear evidence of gravitational collapse, the same gradual process that built the Sun. A disk forms when a spinning gas cloud contracts, growing denser and more compact. The angular momentum of the spinning material forces it into a disk shape. The planets in our solar system formed from such a disk 4.5 billion years ago.